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A data set containing physicochemical properties and enzymatic activity measurements of aspartyl
proteinases was employed for quantitative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) modeling based on either three or five amino acid principal
property sums. All but one of the models based on five principal properties were stronger than those
based on three properties. Models of zeta potential (R2 ) 0.846), circular dichroism (R2 ) 0.638),
Bigelow average hydrophobicity (R2 ) 0.692), accessible surface area (R2 ) 0.897), and two dye-
based assessments of hydrophobicity (R2 ) 0.581 and 0.595) were constructed. Model quality was
evaluated by cross-validation and permutation. The amino acids most influential for each modeled
property were identified. It is clearly possible to model physicochemical properties of proteins as a
function of amino acid principal property sums. Surprisingly, it was also possible to model an enzyme
activity ratio (milk clotting/proteolytic activity) in the same manner (R2 ) 0.699).
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INTRODUCTION

Proteins and peptides are responsible for a huge range of
biological functions. They act as enzymes, hormones, permeases,
transport systems, antibodies, and bacteriocins and are an
integral part of cell membrane and cell wall structures, among
others. Proteins and peptides contribute functional properties
in foods such as solubility, wettability, viscosity, gelation, fat
binding, water binding, emulsification, and foam, glass, and film
formation (1-3).

Many of the biological functions of proteins are due to a small
region of the molecule (e.g., the active site in an enzyme or the
binding site in an antibody or hormone). In contrast, the
physicochemical attributes are bulk properties that depend on
the overall nature of a protein. For example, proteins with a
high proportion of nonpolar amino acids are more hydrophobic.
The physicochemical properties, singly or in combination, are
responsible for protein functional properties in foods (4-7).
Many relationships or models between protein physicochemical
and functional properties have been described. Because the
physicochemical properties of a peptide are due to its amino
acid composition and the functional properties are a result of
the physicochemical properties, it should in principle be possible
to directly model functional properties from amino acid
composition (8).

To construct models of any sort from amino acid properties
it is necessary to somehow parametrize the latter. In other words,

the dissimilar properties of the different amino acids need to
be expressed on a common set of scales and, preferably, on a
relatively small number of scales.

It has long been desired to model biological properties of
peptides from their amino acid constituents. A number of
approaches to modeling biological activity from amino acid
composition have been developed. Sneath used principal
component analysis (PCA) of amino acid physicochemical
properties to arrive at four scales that were useful for qualita-
tively selecting amino acid alterations that would greatly alter
the biological activity of oxcytocin-vasopressin and hypertensin
(9).

Hellberg and co-workers used PCA to construct three
principal property scales for amino acids based on 29 physi-
cochemical variables (10). These were designated z1, z2, and z3

and essentially represented lipophilicity, molecular size, and
electronic properties, respectively. They were successfully used
to model several biological activities as a function of the
principal property values of amino acids in two or three positions
that were varied in oxcytocin analogues, pepstatin analogues,
and bradykinin potentiating pentapeptides. This modeling ap-
proach enables predictions of behavior from the model for amino
acid substitutions other than those used to construct the model.

Jonsson et al. used the principal properties of Hellberg et al. to
successfully model two very different biological activities, the
bitterness of dipeptides and the bradykinin potentiating activity of
pentapeptides, both as a function of amino acid sequence. In each
case there was a term for each of the three principal properties at
each position in the peptide, so for the dipeptides there were 6
terms and for the pentapeptides 15 terms (11).
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Collantes and Dunn used two different amino acid properties,
the isotropic surface area and electronic charge index, to model
the bradykinin potentiating activity of pentapeptides, the bitterness
of dipeptides, and inhibition of angiotensin by dipeptides (12).

Sandberg et al. (13) carried out PCA with a larger set of
amino acids and properties than used by Hellberg et al. They
computed five rather than three principal properties, which they
called the zz-scales or extended z-scales. The first three of these
corresponded largely to the original z-scales of Hellberg. The
fourth property was positively related to heat of formation and
negatively to electronegativity. The fifth property was positively
related to electrophilicity and negatively to polarizability. These
five principal properties were used to model analogues of
elastase substrates with two amino acid positions varied and of
neurotensin with three positions varied.

Almost all of the aforementioned work was either based
on sequence modeling of short peptides or modeling substitu-
tions of amino acids in short or modest length peptides at
only two or three positions. This is because the number of
terms required with this type of modeling increases by a
factor of 2-5 for each additional amino acid that is varied.
Sequence modeling of longer peptide chains is impractical
because of the large number of variants needed to fit models
with so many terms.

Siebert showed that in some special cases in which the
proportion of one or a few amino acids in a peptide can explain
a property it was possible to model the property as a function
of the contribution of each relevant amino acid to each of the
principal properties (14). These were computed by multiplying
the number of moles of each relevant amino acid in a peptide
by one of its z-scores and algebraically summing together to
arrive at a z-score sum, or z-sum (Σzi):

∑ zi)∑
a)1

k

nazia (1)

a indicates the identity of an amino acid, na refers to the number
of moles of the amino acid in the peptide, and zia is the ith
z-score for amino acid a. For example, the z1-sum of the amino
acids contributing to light absorbance at 280 nm is computed
by algebraically summing the products of the number of moles
of tyrosine, tryptophan, and cysteine (k ) 3) each multiplied
by the z1 score for that amino acid. The sums for z2 and z3 were
computed similarly. The property UV molar absorptivity at 280
nm was then modeled as a function of the z-sums:

A) b0 + b1 ∑ z1 + b2 ∑ z2 + b3 ∑ z3 (2)

or

A) b0 +∑
i)1

3

bi ∑ zi (3)

This approach was also successful in modeling the Coomassie
brilliant blue dye binding response of proteins as a function of
the z-sums of the basic and aromatic amino acids.

Siebert extended the approach to computing z-sums based
on the contributions of all 20 coded amino acids using both the
original three z-scores and the five extended z-scores (8), called
here z′-scores. These were used successfully to model both
physicochemical properties (hydrophobicity and viscosity) and
a functional property (foaming) of a set of proteins.

It was of interest to see if the z-sum approach would be
suitable for modeling additional physicochemical or functional
properties or for other protein data sets. The objective of the
current study was to see if successful models of proteinase

Table 1. Physicochemical and Proteolytic Activity Properties of Proteinases at pH 6.3 from Yada and Nakai (15)

[θ]MRWλ( ×10-3)f

protein H(av)a ASAb ANSc CPAd ZPe 190 193 198 200 202 210 213 222 224 225h MC/PAh

M. miehei proteinase 1109 13000 2 21 -32.9 313 -6 62 -356 -1286 -2811 -2820 -1575 -1168 -952
E. parasitica proteinase 923 12900 7 113 -26.1 1141 1414 385 26 -836 -2492 -2377 -1462 -1193 -1050 71.05
chymosin 1120 11300 48 96 -14 8912 8913 2788 -1125 -4610 -10460 -9577 -8393 -7952 -7656 60.36
pepsin 1063 12300 1 6 -34.6 2684 4094 2051 -47 -2398 -7144 -7059 -4953 -3893 -3402 95.75
M. pusillus proteinase 1041 30600 7 3 -16.9 17 -496 -680 -1091 -1888 -3028 -2948 -1532 -990 -742 47.43
A. saitoi proteinase 973 12200 6 73 -5.79 145 247 -957 -1378 -1821 -2085 -2019 -1244 -972 -821 63.37
penicillopepsin 933 11600 3 23 -39.5 -494 214 238 -704 -1352 -2419 -2114 -295 97 211 0
trypsin 1034 9600 12 6 15.77 -1793 -3050 -3185 -3365 -3560 -2945 -2568 -1412 -1279 -1170 0.75
chymotrypsin 1030 9800 5 9 16.27 4110 870 -6204 -8830 -9730 -7270 -6200 -4260 -4110 -4110 0.02
papain 1159 8700 12 19 19.44 14820 7590 -6990 -8880 -8165 -12580 -11590 -11700 -11700 -11640 3.07

a H(av), Bigelow average hydrophobicity. b ASA, accessible surface area. c ANS, apparent surface hydrophobicity using 1-anilino-8-naphathalenesulfonate. d CPA, apparent
surface hydrophobicity using cis-parinaric acid. e ZP, � potential. g Wavelengths in nanometers. f [θ]MRWλ refers to the molar ellipticity per residue, and its unit is deg cm2

dmol-1. h MC/PA, milk clotting to proteolytic activity ratio.

Table 2. Three-z-Scale Sums and Five-z′-Scale Sums of Proteinases in Table 1

three-z-scale sums five-z′-scale sums

protein ∑z1 ∑z2 ∑z3 ∑z1′ ∑z2′ ∑z3′ ∑z4′ ∑z5′
M. miehei proteinase 6.09 -284.9 -11.03 9.97 -252.6 14.48 -231.8 88.27
E. parasitica proteinase 17.3 -397.12 -32.94 31.55 -353.33 3.99 -245.86 72.14
chymosin -6.8 -212.08 -21.28 -11.33 -185.38 -14.53 -192.53 59.49
pepsin -1.85 -314.14 43.03 12.01 -273.31 44.83 -277.6 72.58
M. pusillus proteinase 58.39 -292.46 -3.44 59.61 -251.98 21.33 -247.1 81.87
A. saitoi proteinase 98.17 -307.25 -8.08 99.73 -268.07 17.37 -261.39 77.00
penicillopepsin 76.00 -342.39 7.18 81.24 -289.00 29.53 -259.39 95.05
trypsin 16.1 -192.75 19.67 12.46 -181.31 11.79 -119.75 38.57
chymotrypsin 23.21 -234.88 -26.68 27.15 -226.19 -14.44 -121.38 51.51
papain 55.48 -137.05 -40.52 42.00 -118.22 -37.21 -86.52 18.93
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activity and physicochemical properties could be constructed
using either three or five z-sums for all of the amino acids in a
protein.

MATERIALS AND METHODS

The data used were reported by Yada and Nakai (15). This data set
contains physicochemical properties and proteinase activity measure-
ments of 10 aspartyl proteinases. The authors calculated Bigelow
average hydrophobicity (H(av)) (16) and accessible surface area (ASA).
Observations of apparent surface hydrophobicity using 1-anilino-8-
naphthalenesulfonate (ANS), apparent surface hydrophobicity using cis-
parinaric acid (CPA), zeta potential (ZP), and the molar ellipticity per
residue ([θ]MRWλ) at 10 wavelengths were made at six different pH
values, as was the milk clotting to proteolytic activity ratio (MC/PA).
In [θ]MRWλ MRW is the mean residue weight and λ is the wavelength
of the observation. The data from a single pH (6.3) were used in the
current study (see Table 1). Some of the observations (H(av), ASA,
ANS and CPA) were made only at pH 6.3.

Amino acid sequences for the proteinases were obtained from
the Swiss-Prot Protein Knowledgebase (Swiss Institute for Bioin-
formatics (SIB) and European Bioinformatics Institute) (http://
www.ebi.ac.uk/swissprot/)). The sequence was analyzed using the
SIB ExPASy (Expert Protein Analysis System) proteomics server
(http://www.expasy.ch/) to obtain the amino acid composition, that
is, the number of moles of each amino acid in the protein sequence.
The three-z-scale and five-z′-scale values for each amino acid were
obtained from refs 10 and 13, respectively. The term ∑zi (or ∑zi′),
which is the algebraic sum of the three-z-scale (or five-z′-scale) value
for each amino acid multiplied by the corresponding number of moles
of that amino acid in the protein sequence and then summed, is
represented as eq 4

∑ zi )∑
a)1

20

nazia or ∑ zi′)∑
a)1

20

nazia′ (4)

where na refers to the number of moles of an amino acid in the
proteinase and a indicates the identity of the amino acid. The index i
represents which of the three-z-scores (i ) 1-3) or five-z′-scores (i )
1-5) is represented. The variables obtained are referred to as z-sums
or z′-sums and were used for modeling.

The physicochemical properties or enzymatic activities of proteinases
were modeled as a function of amino acid composition expressed as
z-sums by partial least-squares regression (PLSR) using the SIMCA-S
6.01 computer program (Umetrics Inc., Kinnelon, NJ), see eq 2. PCA
was also carried out with the SIMCA-S program.

RESULTS AND DISCUSSION

In the study reported by Yada and Nakai (15), the Bigelow
hydrophobicity and accessible surface area were calculated for
10 aspartyl proteases by the approaches of Bigelow (16) and
Janin (17), respectively. Circular dichroism, zeta potential,
hydrophobicity using two different fluorescent probes, and two
observations of enzyme activity (milk clotting and proteolysis)
were measured for the same proteases. The physicochemical
and proteolytic activity properties of the proteinases determined
by Yada and Nakai are listed in Table 1. They carried out PCA
using all of the data and mapped the relationships of the
proteases in the principal component space. No modeling of
properties was carried out.

The amino acid compositions of the proteins used by Yada
and Nakai were obtained. From these and the z-score values
for each amino acid, the three-z-sums and five-z′-sums for each
proteinase were calculated (see Table 2). PLSR was used to
model the physicochemical properties or enzymatic activity ratio
of proteinases as a function of the three z-sums or five z′-sums.

The z-sums represent the overall character of a peptide. As
such, they are likely to be suitable for modeling bulk charac-

teristics such as physicochemical or functional properties. It
seems unlikely that such a representation would be useful for
modeling properties that depend only on a small portion of a
protein (such as the active site of an enzyme). However,
modeling of a protein activity ratio (MC/PA) was attempted
with this set of aspartyl proteases.

When PLSR is carried out with SIMCA-S, the statistics R2

and Q2 are calculated. R2 is the squared multiple correlation
coefficient; this expresses the proportion of the variation of a
dependent variable that is explained by a model based on the
particular data used to derive it and tends to be an optimistic
estimate of model fit. The Q2 parameter is the cross-validated
squared multiple correlation coefficient; this is more conserva-
tive than R2 and is considered to provide an estimate of how
well a model will predict with new data. It is considered to be
a somewhat pessimistic estimate of the prediction ability of a
model. The SIMCA-S program uses cross-validation to deter-
mine the number of significant PLS components and the
optimum model (the one with the highest Q2). This balances
increased predictive ability (higher R2 values with more predic-
tive terms) against overfitting (increased error as more coef-
ficients are fit). Table 3 lists the R2 and Q2 values for the optimal
models of each property using three-z-scale sums and five-z′-
scale sums, and Tables 4 and 5 list the corresponding
coefficients.

The directional contribution of each three-z-sum or five-z′-
sum term to modeling the properties is indicated by the
arithmetic sign of the corresponding PLSR coefficient. A better
indication of the relative magnitude influences of different x
variables on a y variable (but not the direction) is given by a
SIMCA-S statistic called the variable importance in the projec-
tion (VIP). The VIP values for the models of proteinase
properties are shown in Table 6.

Most, but not all, of the properties and activities modeled
based on five-z′-sums had better fits than those based on three-
z-sums (see Table 3). It is apparent that the five-z′-sums
contained more information useful for developing models of
CPA, ZP, [θ]MRWλ, and MC/PA.

The fit of the Bigelow hydrophobicity, H(av), model based
on three-z-sums (R2) was better than that produced with five-
z′-sums, although the prediction ability (Q2) was slightly weaker
(see Table 3). This result is not surprising because H(av) is
obtained by a one-dimensional calculation of the contribution
to hydrophobicity made by each amino acid multiplied by the
number of moles of that amino acid, summed and divided by
the total number of amino acids (16). As a result, a three-term
model should be more than sufficient to model this property.
In fact, both the three-z-sum and the five-z′-sum models were
based on only one PLS component. For the H(av) model based

Table 3. Results of Optimum Models Calculated by PLSR Relating
Three-z-Sums or Five-z′-Sums to Properties of Proteinases

three-z-scale sum models five-z′-scale sum models

propertya compsb R2 Q2 comps R2 Q2

H(av) 1 0.692 0.353 1 0.527 0.395
ASA 1 0.118 0.0 1 0.178 0.054
ANS 1 0.327 0.058 1 0.263 0.116
CPA 1 0.445 0.0 2 0.595 0.215
ZP 1 0.660 0.433 2 0.846 0.709
[θ]MRWλ 1 0.532 0.219 2 0.638 0.311
MC/PA 1 0.474 0.298 2 0.699 0.397

a The protein property abbreviations are as explained in the footnote to Table
1. b Number of significant PLS components. R2 is the squared multiple correlation
coefficient. Q2 is the cross-validated squared multiple correlation coefficient.
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on three-z-sums, ∑z1 and ∑z3 had negative signed coefficients,
whereas ∑z2 was positive (see Table 4); this indicates that lower
values of ∑z1 (hydrophobicity) or ∑z3 (electronic properties)
or larger values of ∑z2 (molecular size) increase H(av).
According to the VIP values shown in Table 6, the most
influential variable was ∑z2, followed by ∑z1. These results
indicate that amino acid molecular size is an important factor
for the H(av) model. When using five-z′-sums to model H(av),
the signs of the ∑z2′ and ∑z4′ coefficients were positive;
however, those for ∑z1′, ∑z3′, and ∑z5′ were negative (see Table
4). Similarly to the three-z-sum model, the two most influential
variables were ∑z2′ and ∑z1′ (see Table 6).

For the ASA and ANS models, the R2 and Q2 values with
both the three-z-sum and five-z′-sum models were low. This
indicates that neither model was significant. This could have
resulted from an outlier sample in this data set. Outliers are
observations that, for some reason, do not conform to the general
pattern present in a data set (18). The residual standard deviation
(RSD) of an observation in the Y space is proportional to the
distance from the PLS model (DModY). This is calculated by
SIMCA-S after all components are extracted and can be
employed to identify outliers. Figure 1 shows the DModY
values for each enzyme for ASA. It is quite apparent that M.
pusillus proteinase had a higher DModY value than any other
observation with both the three-z-sum and five-z′-sum ASA

models. This indicates that this sample did not follow the general
pattern and might be an outlier. This sample was removed from
the data set, and a second round of modeling was carried out.
The relationships between the observed and predicted ASA
values are shown in Figure 2. The R2 and Q2 values of the
optimum ASA models were 0.718 and 0.523 using three-z-sums
and extracting one PLS component, and 0.897 and 0.760 using
five-z′-sums and extracting two PLS components. These are
substantially improved compared to the results shown in Table
3. For the ASA outlier-removed model, the term ∑z2 (amino
acid molecular size) was the most influential factor (see Table
6); it was negatively related to ASA values (see Table 4) in
the three-z-sum model. The Janin calculation of ASA (17) used
by Yada and Nakai is a function of protein molecular weight;
this is also, of course, related to size, but of the entire protein
rather than of the amino acids. In the five-z-scale model of ASA,
the highest two VIP values were those for ∑z4′ (electronega-
tivity) and ∑z5′ (electrophilicity), indicating that ∑z4′ and ∑z5′
were the two most important variables. The arithmetic signs of
the ∑z4′ and ∑z5′ coefficients were negative and positive,
respectively (shown in Table 4), showing that they, not

Table 4. PLS Regression Coefficients for the Models of Proteinase Properties and Activity

three-z-sum model coefficients five-z′-sum model coefficients

property b0 b1 b2 b3 b0′ b1′ b2′ b3′ b4′ b5′
H(av) 1250.7 -0.772 0.695 -0.395 1198.50 -0.394 0.297 -0.485 0.174 -0.538
ASAa 7508.5 -4.248 -14.810 12.012 7086.10 -12.287 -6.732 2.795 -8.261 20.781

ANSa 12.558 0.018 0.027 -0.048 13.959 0.0002 0.011 -0.032 0.011 -0.037
CPA -33.915 -0.087 -0.245 -0.980 -104.82 -0.236 -0.452 -1.712 -0.265 0.015
ZP 37.541 0.054 0.196 -0.287 41.969 0.188 0.060 -0.156 0.114 -0.330
MC/PA 24.053 -0.712 -0.125 -0.118 -8.052 -0.888 -0.043 -0.208 -0.184 0.432

a Single outliers were excluded from the ASA and ANS models.

Table 5. PLS Regression Coefficients for the [θ]MRWλ Model

wavelength

190 nm 193 nm 198 nm 200 nm 202 nm 210 nm 213 nm 222 nm 224 nm 225 nm

Three-z-Sum Model Coefficients
b0 13653 6980.8 -6678.2 -9606.7 -10093 -12894 -11572 -11319 -11448 -11428
b1 -17.526 -8.218 8.920 11.553 10.726 12.438 10.917 12.547 13.360 13.628
b2 39.089 18.329 -19.894 -25.767 -23.922 -27.741 -24.348 -27.983 -29.798 -30.395
b3 -73.568 -34.496 37.442 48.496 45.023 52.211 45.826 52.667 56.082 57.206

Five-z′-Sum Model Coefficients
b0′ 12773 5826.1 -7772.1 -10370 -10372 -12442 -11121 -10838 -10995 -11002
b1′ -26.272 -46.515 -49.409 -31.619 -5.514 36.955 36.519 32.007 27.917 25.326
b2′ 16.994 11.921 -1.634 -5.925 -8.375 -14.945 -13.636 -14.278 -14.392 -14.272
b3′ -46.338 -27.726 13.295 23.097 25.979 38.396 34.556 37.243 38.278 38.362
b4′ 8.212 -8.713 -27.554 -23.879 -13.562 -0.085 1.366 -1.780 -4.033 -5.216
b5′ -41.452 -13.095 33.544 37.662 30.937 28.574 24.477 29.175 31.879 32.958

Table 6. VIP Values for Models of Proteinase Properties and Activity

VIP values of three-z-sum model VIP values of five-z′-sum model

property ∑z1 ∑z2 ∑z3 ∑z1′ ∑z2′ ∑z3′ ∑z4′ ∑z5′
H(av) 0.778 1.521 0.285 0.961 1.370 0.821 0.853 0.893
ASAa 0.214 1.660 0.445 0.608 1.064 0.894 1.196 1.126
ANSa 0.416 1.439 0.870 0.008 0.999 1.037 1.157 1.261
CPA 0.171 1.042 1.373 0.455 0.995 1.522 0.835 0.888
ZP 0.196 1.550 0.747 0.666 0.964 0.940 1.184 1.158
[θ]MRWλ 0.300 1.450 0.899 0.777 1.020 1.060 1.066 1.047
MC/PA 1.609 0.612 0.191 1.377 0.719 0.949 0.992 0.838

a Single outliers were excluded for the ASA and ANS models.

Figure 1. Distance from the model (DMod) values for each protein for
the models of accessible surface area (ASA) based on (A) three-z-sums
and (B) five-z′-sums.

QSAR Modeling of Proteinase Properties J. Agric. Food Chem., Vol. 57, No. 6, 2009 2539



surprisingly, had opposite effects on ASA. In both the three-
and five-z-scale models a single PLS component was used; this
indicates that a single fundamental property was sufficient to
explain the variation in ASA.

For the ANS model chymosin had a high DModY value (see
Figure 3), suggesting that this sample may be an outlier. A
second round of ANS modeling was carried out excluding
chymosin. The results obtained (see Figure 4) were somewhat
improved. The R2 produced with three-z-sums and one PLS
component increased from 0.327 to 0.489, whereas Q2 decreased
from 0.058 to 0. The five-z′-sum model R2, however, increased
from 0.263 to 0.581 and Q2 increased from 0.116 to 0.460.
Therefore, the five-z′-sum models of ASA and ANS were better
than the respective three-z-sum models.

The three-z-sum model of hydrophobicity measured with CPA
had R2 and Q2 values of 0.445 and 0, respectively, whereas the
corresponding five-z′-sum model values were 0.595 and 0.215.

These were weak models. There are many methods to measure
protein hydrophobicity (19). Among these, the ANS and CPA
methods both employ fluorescence probes, and CPA has some
advantages compared to ANS (20). The VIP value ranks for
the ANS and CPA models were quite different. ∑z2 was the
most important variable for the ANS model, whereas the term
∑z3 was most influential for the CPA model, followed by ∑z2

(see Table 6). The signs of the ∑z1 and ∑z2 coefficients were
opposite for the ANS and CPA models. The five-z-sum ANS
model VIP values for ∑z4′ and ∑z5′ were similar and higher
than for the other terms; the coefficients for these two terms
were positive and negative, respectively (see Table 4). Unlike
the ANS model, ∑z3′ was the most influential term for the CPA
model based on five-z′-sums. The regression coefficients in
Table 4 indicate that CPA increases with decreasing ∑z3′
(electronic properties).

The three-z-sum model of zeta potential (ZP) had R2 and Q2

values of 0.660 and 0.433, respectively, whereas the corre-
sponding five-z′-sum model values were 0.846 and 0.709. This
was the strongest model produced with this data set, excepting
the outlier-removed ASA model. For the ZP model, ∑z2 had
the largest VIP value in the three-z-sum model (see Table 6)
and was positively related to ZP (shown in Table 4). The terms
∑z4′ and ∑z5′ had similar VIP values and greater influence on
ZP compared with the other three terms in the five-z-sum model
(shown in Table 6). As shown in Table 4, b4′ (positive) and
b5′ (negative) had different signs denoting opposite associations
with ZP.

Circular dichroism (CD) is useful for structural characteriza-
tion of proteins and particularly for secondary structure
determination (21, 22). In the data set used in this paper CD
observations were made at 10 wavelengths, so there were 10
dependent (y) variables. PLSR has the ability to simultaneously
model multiple y variables as a function of the same set of x
variables. If y variables are correlated, it is preferable to analyze
them with a single model (23), because PLSR in this way can
yield simpler overall results than using one separate model for
each y variable. Before PLSR was performed, PCA was
employed to assess the correlation of the y variables. Cross-
validation indicated that four components were significant and
explained 99.8% of the variance of the y variables. Because 4
components are considerably fewer than the 10 variables, this
indicates that the y variables were indeed correlated. The CD
observations at the 10 wavelengths were analyzed together by
PLSR using three-z-sums or five-z′-sums; the results are shown
in Table 5. The most important three-z-sum model term was
∑z2 (see Table 6). As listed in Table 5, the response coefficients
at all wavelengths except 190 and 193 nm had negative signs.
For the [θ]MRWλ model based on five-z′-sums, the VIP values
of four terms, ∑z2′-∑z5′, had similar values, with ∑z4′ slightly
higher than the others (see Table 6). The corresponding
coefficients tended to have opposite signs for the 190 and
193 nm responses from the higher wavelengths (shown in
Table 5).

Enzymes used for cheesemaking need to not only clot milk
but also possess general proteolytic activity (24). The MC/PA
(milk clotting to proteolytic activity ratio) characterizes the
enzymatic activity. As previously mentioned, it seems unlikely
that the z-sum modeling approach, which characterizes bulk
protein properties, would successfully represent enzyme activity.
However, the three-z-sum model of MC/PA had R2 and Q2

values of 0.474 and 0.298, respectively, whereas the corre-
sponding five-z′-sum model values were 0.699 and 0.397.
Therefore, this model was actually stronger than the CPA and

Figure 2. Relationship between observed and predicted ASA properties
from the models constructed excluding M. pusillus proteinase: fits for ASA
based on (A) three-z-sum (R2 ) 0.718, Q2 ) 0.523) and (B) five-z′-sum
(R2 ) 0.897, Q2 ) 0.760) models.

Figure 3. Distance from the model (DMod) values for each protein for
the models of apparent surface hydrophobicity determined with the
1-anilino-8-naphthalenesulfonate (ANS) method based on (A) three-z-
sums and (B) five-z′-sums.

Figure 4. Relationship between observed and predicted ANS from the
models constructed excluding chymosin: fits of ANS based on (A) three-
z-sum (R2 ) 0.489, Q2 ) 0) and (B) five-z′-sum (R2 ) 0.581, Q2 )
0.460) models.
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[θ]MRWλ models and similar in strength to the H(av) model. For
the models of MC/PA, ∑z1 and ∑z1′ were the most influential
variables (see Table 6) for the three-z-sum and five-z′-sum
models, respectively. The coefficients of all three terms used
in the three-z-sum model had negative signs (see Table 4),
indicating that lower hydrophobicity, lower molecular size and
lower electronic properties were related to higher MC/PA. In
the five-z′-sum model of MC/PA, all of the coefficients except
b5′ had negative signs (see Table 4).

In the five-z′-sum models for ASA (outlier excluded), ANS
(outlier excluded), and ZP, the two highest VIP values were in
all cases ∑z4′ and ∑z5′. For the [θ]MRWλ model, the VIP values
of ∑z4′ and ∑z5′, which were similar in magnitude, were first
and third highest. This indicates that the fourth and fifth scales
contained useful information for developing models and pre-
sumably explains why using five-z′-sums most often produced
stronger models than using three-z-sums (see Table 3). For the
MC/PA model, the VIP value of ∑z4′ ranked second of the five
VIP values, which indicates that ∑z4′ provides information that
strengthened the model. In the CPA and H(av) models, although
the VIP values of ∑z5′ were third in the ranking, this variable
had influence on the models.

The models developed were validated by response permuta-
tion (24), which estimates the chance (probability) of getting a
good fit with randomly reordered response data (25). This
permutation leaves the predictor (x) variables intact but randomly
shuffles the order of the y variables multiple times (30 times in
this study). After each reordering, the model is refit and R2 and
Q2 are calculated and compared with the original model. The
cumulative R2 and Q2 are plotted versus the correlation
coefficient between the original y and the permuted y. The
intercepts measure the extent of overfitting of a model. For a
valid model the intercepts of R2 and Q2 should be less than 0.3
and 0.05, respectively (26). This was the case with all of the
models except those for CPA and for [θ]MRWλ measured at 193
nm (see Tables 7 and 8). For the CPA model, the Q2 intercept
for the three-z-sum model and the R2 intercept of the five-z′-
sum model are slightly higher than the suggested limit.
According to Wold and Eriksson (24), high R2 values from
permutations could be obtained with a random y-vector.
However, a high Q2 value is not likely to be obtained in this
manner, and so the CPA model based on five-z′-sums can be
regarded as valid. The models of [θ]MRWλ measured at 193 nm,
using either three-z-sums or five-z′-sums, were invalid because
the intercepts of both R2 and Q2 based on 30 permutations
exceeded the recommended values for a valid model.

It has been stated that if the structure of a protein is known,
its function can be understood (27). Hydrophobic, electrostatic,
and steric parameters are important characteristics that describe
molecules. Models have been made that predict the functional
mechanisms of many chemical compounds, including drugs and
olfactory stimulants, based on these three parameters (28). It is

interesting that the physicochemical meaning of these parameters
is similar to those represented by the three-z-sums or the first
three terms of the five-z′-sums. According to eq 1, the terms
∑zi (or ∑zi′) can be regarded as linear combinations of the
contributions of each amino acid in a protein to each funda-
mental property. Because both the number of moles of each
amino acid (na in eq 1) and the z-scale values of each amino
acid are different, each proteinase has unique values for the
property sums. By noting how much each amino acid contributes
to a ∑zi or ∑zi′, it should be possible to discover which types
of amino acids are responsible for strong positive or negative
effects on the properties or activity of proteinases. The terms
that had the largest VIP values in a model (see Table 6) were
first noted, and the positive or negative relationship to a property
was found from the arithmetic sign of the corresponding
coefficient (see Table 4). The amino acids with greatest
contributions to the z-sum, based on the magnitudes of the nazia

(nazia′) values, were the most influential for a property. Table
9 shows the three most positively and negatively influential
amino acids in various proteinases for each model.

For example, because the MC/PA model based on five-z′-
sums was much stronger than the one obtained with three-z-
sums, the most influential amino acids were determined on the
basis of the five-z′-sum model. According to Table 1, chymosin
has a high milk clotting to proteolytic activity ratio, whereas
A. saitoi proteinase has a low value of MC/PA, so the differences
between the two proteinases in their contents of amino acids
were compared. As shown in Table 6, the most important term
in the MC/PA model was ∑z1′, and the sign of the corresponding
coefficient in Table 4 was negative, so the strongest positive
influence on the MC/PA value was from amino acids that
contributed highly negative values of naz1a′. This can be seen
in Figure 5, which shows the values of naz1a′ for chymosin and
the A. saitoi proteinase, which had, respectively, the highest
and lowest values of MC/PA of the proteases studied. For
chymosin the three amino acids contributing most strongly to
negative naz1a′ values were leucine (L), isoleucine (I), and
phenylalanine (F). Aspartic acid (D), serine (S), and glycine
(G) had the three largest positive contributions to naz1a′,
contributing to low values of MC/PA. Similar analyses were
carried out for each enzyme for each modeled property, and
the results are shown in Table 9.

Some general trends could be observed. In the H(av) model
at least one, and often two, aromatic amino acids (phenylalanine
(F), tyrosine (Y), or tryptophan (W)) contributed positively to
H(av) for all of the proteinases. Aspartic acid (D) contributed
positively in 6 of the 10 proteinases. One of the hydroxylated
amino acids (threonine (T) or serine (S)) contributed to low
H(av) values in 8 of the 10 proteinases.

In the outlier-removed ASA model the hydroxylated (S and
T) and acidic (D and glutamic acid (E)) amino acids contributed
positively to ASA in all nine of the modeled enzymes. Negative
contributors to ASA were frequently basic (H, K, and R) and
aromatic (F and W) amino acids.

The outlier-removed model of hydrophobicity measured with
ANS in every case had positive contributions from aromatic
(F, Y, and W) amino acids and often negative contributions
from proline (P) (seven of nine), alanine (A) (eight of nine),
and asparagine (N) (six of nine). This has similarities to the
calculated hydrophobicity model (H(av)) in having aromatic
amino acids contributing positively (nine of nine) and hydroxy-
lated amino acids negatively (five of nine).

The CPA model in every case had positive contributions from
one or more nonpolar amino acids (isoleucine (I), leucine (L),

Table 7. Cumulative R2 and Q2 versus Correlation Intercepts after 30
Permutations of Each Model

three-z-sum model intercepts five-z′-sum model intercepts

property R2 Q2 R2 Q2

H(av) 0.18 -0.03 0.21 -0.02
ASAa 0.24 -0.04 0.29 -0.17
ANSa 0.25 0.05 0.18 -0.06
CPA 0.29 0.06 0.36 -0.01
ZP 0.22 -0.02 0.28 -0.12
MC/PA 0.25 -0.02 0.29 -0.06

a Single outliers were excluded for the ASA and ANS models.
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or valine (V)). Negative contributions to CPA were in all cases
from hydroxylated (S or T) and often (9 of 10 times) from
aspartic acid (D).

MC/PA had strong positive contributions from nonpolar (I,
L, and V) (10 of 10) and aromatic (F and Y) (8 of 10) amino
acids. Negative contributions came from hydroxylated (S) (9
of 10) and acidic (D) (8 of 10) amino acids.

ZP had strong positive contributions from hydroxylated (S
or T) and acidic (D or E) amino acids in all 10 cases. Strong

negative influence came from basic amino acids (H, R, or K)
in 9 of 10 cases and from aromatic amino acids (F or W) in 8
of 10 cases.

The CD model had strong positive contributions from
hydroxylated (S and T) and acidic amino acids (D and E) in all
10 cases. Strong negative influence came from basic amino acids
(H, K, or R) (9 of 10). Aromatic amino acids (F or W) frequently
exerted negative influence as well (8 of 10).

Other than the association between the free energies of
transfer of amino acid side chains from organic to aqueous phase
and hydrophobicity, which is used to calculate the Bigelow
average hydrophobicity of a protein, very few cases of modeling
protein properties from amino acid composition have been
described in the literature. Siebert previously used amino acid
principal property sums to model Bigelow and exposed hydro-
phobicity and foam capacity. In the current study successful
models of protein circular dichroism, accessible surface area,
zeta potential, and hydrophobicity determined by two different
assays (CPA and ANS) as functions of amino acid composition
were demonstrated for the first time. Modeling of a ratio of
enzyme activities in a similar manner was also unprecedented.
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